Adaptive Facial Expression Identification Using PCA and Wavelet Transform
نویسندگان
چکیده
منابع مشابه
An Adaptive Segmentation Method Using Fractal Dimension and Wavelet Transform
In analyzing a signal, especially a non-stationary signal, it is often necessary the desired signal to be segmented into small epochs. Segmentation can be performed by splitting the signal at time instances where signal amplitude or frequency change. In this paper, the signal is initially decomposed into signals with different frequency bands using wavelet transform. Then, fractal dimension of ...
متن کاملAn Adaptive Segmentation Method Using Fractal Dimension and Wavelet Transform
In analyzing a signal, especially a non-stationary signal, it is often necessary the desired signal to be segmented into small epochs. Segmentation can be performed by splitting the signal at time instances where signal amplitude or frequency change. In this paper, the signal is initially decomposed into signals with different frequency bands using wavelet transform. Then, fractal dimension of ...
متن کاملRecognition of Facial Expression Using Haar Wavelet Transform
89 Abstract— This paper investigates the performance of a multiresolution technique and statistical features for facial expression recognition using Haar wavelet transform. Multiresolution was conducted up to fifth level of decomposition. Six statistical features namely variance, standard deviation, mean, power, energy and entropy were derived from the approximation coefficients for each level ...
متن کاملPerson Identification Using Palm Image Fusion Using Hybrid Wavelet Transform with PCA and EHD
Many biometric based personal identification systems have been developed, and palm print identification is one of the emerging technologies. Recently, biometric technologies are used to solve security problems in the information area. Authentications of a person by the physiological or behavioural characteristics have attracted researcher’s attention. Proposed method uses Hybrid Wavelet Transfo...
متن کاملUsing PCA with LVQ, RBF, MLP, SOM and Continuous Wavelet Transform for Fault Diagnosis of Gearboxes
A new method based on principal component analysis (PCA) and artificial neural networks (ANN) is proposed for fault diagnosis of gearboxes. Firstly the six different base wavelets are considered, in which three are from real valued and other three from complex valued. Two wavelet selection criteria Maximum Energy to Shannon Entropy ratio and Maximum Relative Wavelet Energy are used and compared...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indian Journal of Science and Technology
سال: 2016
ISSN: 0974-5645,0974-6846
DOI: 10.17485/ijst/2016/v9i39/100789